Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3
نویسندگان
چکیده
Protein arginine methyltransferases (PRMTs) plays critical roles in cancer. PRMT5 has been implicated in several types of tumors. However, the role of PRMT5 in cancer development remains to be fully elucidated. Here, we provide evidence that PRMT5 is overexpressed in colorectal cancer (CRC) cells and patient-derived primary tumors, correlated with increased cell growth and decreased overall patient survival. Arginine methyltransferase inhibitor 1 (AMI-1)strongly inhibited tumor growth, increased the ratio of Bax/Bcl-2, and induced apoptosis in mouse CRC xenograt model. AMI-1 also induced apoptosis and decreased the migratory activity in several CRC cells. In CRC xenografts AMI-1 significantly decreased symmetric dimethylation of histone 4 (H4R3me2s), a histone mark of type II PRMT5, but not the expression of H4R3me2a, a histone mark of type I PRMTs. These results suggest that the inhibition of PRMT5 contributes to the antitumor efficacy of AMI-1. Chromatin immunoprecipitation (ChIP) identified FGFR3 and eIF4E as two key genes regulated by PRMT5. PRMT5 knockdown reduced the levels of H4R3me2s and H3R8me2s methylation on FGFR3 and eIF4E promoters, leading to decreased expressions of FGFR3 and eIF4E. Collectively, our findings provide new evidence that PRMT5 plays an important role in CRC pathogenesis through epigenetically regulating arginine methylation of oncogenes such as eIF4E and FGFR3.
منابع مشابه
Identification of a Novel Protein Arginine Methyltransferase 5 Inhibitor in Non-small Cell Lung Cancer by Structure-Based Virtual Screening
Protein arginine methyltransferase 5 (PRMT5) is able to regulate gene transcription by catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a key role in tumorigenesis. Many efforts have been taken in discovering small-molecular inhibitors against PRMT5, but very few were reported and most of them were SAM-competitive. EPZ015666 is a recently reported PRMT5 inhib...
متن کاملArginine methylation controls growth regulation by E2F-1.
E2F transcription factors are implicated in diverse cellular functions. The founding member, E2F-1, is endowed with contradictory activities, being able to promote cell-cycle progression and induce apoptosis. However, the mechanisms that underlie the opposing outcomes of E2F-1 activation remain largely unknown. We show here that E2F-1 is directly methylated by PRMT5 (protein arginine methyltran...
متن کاملProtein N-arginine methyltransferase 5 promotes the tumor progression and radioresistance of nasopharyngeal carcinoma.
Radiotherapy resistance is the main cause of the the poor prognosis of some nasopharyngeal carcinoma (NPC) patients. Yet, the exact mechanism is still elusive. In the present study, we explored the clinical and biological role of protein arginine methyltransferase 5 (PRMT5) in NPC. Our results revealed that PRMT5 was overexpressed in NPC tissues when compared with that in adjacent non-tumor tis...
متن کاملAdapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers
Pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC) are notoriously challenging for treatment. Hyperactive nuclear factor κB (NF-κB) is a common culprit in both cancers. Previously, we discovered that protein arginine methyltransferase 5 (PRMT5) methylated and activated NF-κB. Here, we show that PRMT5 is highly expressed in PDAC and CRC. Overexpression of PRMT5 promoted cancer p...
متن کاملNuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase.
Cyclin D1 elicits transcriptional effects through inactivation of the retinoblastoma protein and direct association with transcriptional regulators. The current work reveals a molecular relationship between cyclin D1/CDK4 kinase and protein arginine methyltransferase 5 (PRMT5), an enzyme associated with histone methylation and transcriptional repression. Primary tumors of a mouse lymphoma model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015